If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(2x)^2=45
We move all terms to the left:
x^2+(2x)^2-(45)=0
We add all the numbers together, and all the variables
3x^2-45=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| 9x+7x-4=12 | | 7x-10-4x=20 | | 6+((5x-1)/3)=10 | | 1+x+4-2x=1+6x+4 | | 1/3x-6=1/3x-2 | | x+2x-2=2 | | -2(5n-3)=n | | 10x10=100+2 | | x-2x-2=2 | | 38x=152 | | 152=r(38) | | 7x2-32x+16=0 | | 12a=-18 | | 2x-7=7-12x | | 2x-7=5^7-12x | | x/3+6=27 | | 2x-7=5^712x | | 0=(3x+5)(2-x) | | 0=(3x+5)(2-5) | | P(x)=5x^2+20x+230 | | 2x+3+7x=12 | | n+1/4=3n-11/2/6 | | 0=-3x^+x+10 | | 1-2(1+3x)-2)(x+2)+3x)=-1 | | 3(x−1/4)=13/6 | | x/7+3=0 | | z/7+5=10 | | 9a+5=7a | | 7+16n-6=5n+113-3n | | 2x^2+4x-16=4 | | 8x+2=26+5x | | 36-8x+4x-16=40 |